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Motivation I

Why do we do inference (i.e., compute standard errors, test statistics,
p-values, . . . ) in the first place?

▶ Incomplete information → uncertainty

Where does the uncertainty in estimation results come from?

▶ Observe only a (small) subset of the population → sampling-based
uncertainty

▶ Could implement an intervention in many different ways →
design-based uncertainty

▶ Do not know the true model for the outcome variable as a function
of the explanatory variable(s), i.e., the conditional expectation
function → model uncertainty
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Sampling-Based Uncertainty I

The goal is to obtain information about the relationship between a set of
variables, (Y ,X ,Z ) say

Full information on the joint distribution F (Y ,X ,Z ) would require
knowledge of the values of (Y ,X ,Z ) of all members of the population

The population is large, potentially infinite, so that one can never know
the values of (Y ,X ,Z ) of all members of the population

The solution is to sample a subset of the population in a probabilistic way

The assumption of random sampling provides the mathematical
foundation for applying the tools of statistics that allow us to infer
features of the population distribution, F (Y ,X ,Z ), from a sample
(generalizing inference)
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Sampling-Based Uncertainty II
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Panel Study of Income Dynamics, or the one percent public-use sample from the U.S.
Census, it is natural to regard the sample as a small random subset of the population of
interest. In many other settings, however, this sampling perspective is less appropriate.
For example, Manski and Pepper (2018) wrote, “Random sampling assumptions, how-
ever, are not natural when considering states or counties as units of observation.” In this
article, we provide an alternative framework for the interpretation of uncertainty in re-
gression analysis regardless of whether a substantial fraction of the population or even
the entire population is included in the sample. While our framework accommodates
sampling-based uncertainty, it also takes into account design-based uncertainty, which
arises when the parameter of interest is defined in terms of the unobserved outcomes that
some units would attain under a certain intervention. Design-based uncertainty is often
explicitly accounted for in the analysis of randomized experiments where it is the basis of
randomization inference (Neyman, (1923/1990), Rosenbaum, (2002), Imbens and Rubin
(2015)), but it is rarely explicitly acknowledged in regression analyses or, more generally,
in observational studies (exceptions include Samii and Aronow (2012), Freedman (2008),
Lu (2016), Lin (2013)).

To illustrate the differences between sampling-based inference and design-based infer-
ence, consider two simple examples. In the example of Table I, there is a finite population
consisting of n units with each unit characterized by a pair of variables, Yi and Zi. Con-
sider an estimand that is a function of the full set of pairs {(Yi�Zi)}ni=1. Uncertainty about
such an estimand arises when we observe the values (Yi�Zi) only for a sample, that is, for
a subset of the population. In Table I, inclusion of unit i in a sample is coded by the binary
variable Ri ∈ {0�1}. An estimator is a function of the observed data, {(Ri�RiYi�RiZi)}ni=1.
Sampling-based inference uses information about the process that determines the sam-
pling indicators R1� � � � �Rn to assess the variability of estimators across different samples.
The second and third sets of columns in Table I depict such alternative samples. Table II
depicts a different scenario in which we observe, for each unit in the population, the value
of one of two potential outcome variables, either Y ∗

i (1) or Y ∗
i (0), but not both. The binary

variable Xi ∈ {0�1} indicates which potential outcome we observe. Consider an estimand
that is a function of the full set of triples {(Y ∗

i (1)�Y
∗
i (0)�Xi)}ni=1. As before, an estimator

is a function of the observed data, the pairs (Xi�Yi), for i= 1� � � � � n, where Yi = Y ∗
i (Xi) is

the realized value. Design-based inference uses information about the process that deter-
mines the assignments X1� � � � �Xn to assess the variability of estimators across different
samples. The second and third sets of columns in Table II depict such alternative samples.

More generally, we can have missing data processes that combine features of these two
examples, with some units not included in the sample at all, and with some of the variables

TABLE I

SAMPLING-BASED UNCERTAINTY (� IS OBSERVED, ? IS MISSING)

Actual Sample Alternative Sample I Alternative Sample II � � �

Unit Yi Zi Ri Yi Zi Ri Yi Zi Ri � � �

1 � � 1 ? ? 0 ? ? 0 � � �
2 ? ? 0 ? ? 0 ? ? 0 � � �
3 ? ? 0 � � 1 � � 1 � � �
4 ? ? 0 � � 1 ? ? 0 � � �
���

���
���

���
���

���
���

���
���

��� � � �
n � � 1 ? ? 0 ? ? 0 � � �
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Notes: Sampling from a population with n units, ‘✓’ denotes observed, ‘?’ denotes not observed. Source: Abadie

et al. (2020), Table 1.

▶ How does an estimator behave across samples, if one drew a large
number of independent random samples?

▶ How does an estimator behave, if the sample size is increased so
that eventually the full population is observed?
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Design-Based Uncertainty I

Consider a data set with information on traffic accidents for all 400
districts in Germany → sample = population, no natural superpopulation

We observe, for each unit in the population, the value of one of two
potential outcome variables, either Y ∗

i (1) or Y
∗
i (0), but not both.

The binary variable Xi ∈ {0, 1} indicates which potential outcome we
observe.

Example

▶ Y ∗
i (1) the number of traffic accidents with a universal speed limit of

30km/h in place and Y ∗
i (0) the number of traffic accidents without

▶ Xi = 1 if a universal speed limit of 30km/h is in place and zero else

▶ Research question: What is the effect of a universal speed limit of
30km/h on traffic accidents?
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Design-Based Uncertainty II

SAMPLING-BASED VERSUS DESIGN-BASED UNCERTAINTY 267

TABLE II

DESIGN-BASED UNCERTAINTY (� IS OBSERVED, ? IS MISSING)

Actual Sample Alternative Sample I Alternative Sample II � � �

Unit Y∗
i (1) Y∗

i (0) Xi Y∗
i (1) Y∗

i (0) Xi Y∗
i (1) Y∗

i (0) Xi � � �

1 � ? 1 � ? 1 ? � 0 � � �
2 ? � 0 ? � 0 ? � 0 � � �
3 ? � 0 � ? 1 � ? 1 � � �
4 ? � 0 ? � 0 � ? 1 � � �
���

���
���

���
���

���
���

���
���

��� � � �
n � ? 1 ? � 0 ? � 0 � � �

not observed for the sampled units. Articulating both the exact nature of the estimand of
interest and the source of uncertainty that makes an estimator stochastic is a crucial first
step to valid inference. For this purpose, it will be useful to distinguish between descriptive
estimands, where uncertainty stems solely from not observing all units in the population
of interest, and causal estimands, where the uncertainty stems, at least partially, from
unobservability of some of the potential outcomes.

The main formal contribution of this article is to generalize the results for the approxi-
mate variance for multiple linear regression estimators associated with the work by Eicker
(1967), Huber (1967), and White (1980a, 1980b, 1982), EHW from hereon, in two ways.
First, our framework allows for sampling from a finite population, whereas the EHW
results assume random sampling from an infinite population. Second, our framework ex-
plicitly takes into account design-based uncertainty. Incorporating these generalizations
requires developing a new framework for regression analysis, nesting as special cases the
Neyman (1923/1990) analysis of randomized experiments with binary treatments, as well
as the generalizations to randomized experiments with additional regressors in Samii and
Aronow (2012), Freedman (2008), and Lin (2013). We show that in large samples, the
widely used EHW robust standard errors are conservative, and only correct in special
cases. Moreover, we show that the presence of attributes—that is, characteristics of the
units fixed in our repeated sampling thought experiments—can be exploited to improve
on the EHW variance estimator, and we propose variance estimators that do so. Another
advantage of the formal separation into sampling-based and design-based uncertainty is
that it allows us to clarify the distinction between the assumptions needed for internal and
external validity (Shadish, Cook, and Campbell (2002), Manski (2013), Deaton (2010)) in
terms of these two sources of uncertainty.

Our results are relevant in empirical settings where researchers have a random sam-
ple from a finite population and the ratio of the sample size to the population size is
sufficiently large so that the proposed finite-population correction matters. Examples of
such settings include large-scale experiments (see Muralidharan and Niehaus (2017)),
settings where the cost of data acquisition motivates the use of random samples (see,
e.g., Keels, Duncan, DeLuca, Mendenhall, and Rosenbaum (2005)), as well as analyses
based on public-use census samples, like the 2010 Integrated Public Use Microdata Se-
ries (IPUMS) data (which is a 10 percent sample of the U.S. Census). More importantly
in our view, our results are relevant in empirical settings where it is not natural to think of
the data as a random sample from a well-defined population. Instead, the researcher may
have the entire population, for example, states or counties as in the Manski and Pepper
(2018) quote, or the set of all visits to a website, or the researcher may have a convenience
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Notes: Sampling from a population with n units, ‘✓’ denotes observed, ‘?’ denotes not observed. Source: Abadie

et al. (2020), Table 2.

Design-based inference uses information about the process that
determines the assignments X1, . . . ,Xn to assess the variability of an
estimator across different samples.

Design-based uncertainty can also arise in convenience samples

Concept generalizes to the multiple regression framework (Abadie, Athey,
Imbens, and Wooldridge, 2020, Econometrica).

Sampling-based standard errors are in general too conservative
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Model Uncertainty I

The question of how to select an appropriate model is often not treated
formally in econometrics and empirical economics

Traditional view: model specification firmly guided by economic theory

Moreover, the consequences of data-driven model selection on the
sampling properties of post-selection estimators are complicated
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Model Uncertainty II

Leeb and Pötscher (2005, Econometric Theory) review important
implications of some commonly used model selection procedures for
inference

▶ Standard consistent model selection procedures, i.e., procedures
that asymptotically select the correct model with probability
approaching one, do not affect the asymptotic distribution of the
post-model selection estimator

▶ However, in finite samples of any given size, the sampling properties
of the post-model selection estimator are very different from the
standard finite-sample or asymptotic distributions arising under the
assumption of a fixed model

▶ The finite-sample distribution of a post-model selection estimator is
not uniformly close to its asymptotic distribution because the
probability of a model selection mistake depends on the unknown
values of the population parameters
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Model Uncertainty III

Literature on causal machine learning proposes a principled approach to
deal with model uncertainty

Mitigating model selection mistakes is an important concern, but also
regularization and overfitting bias

Belloni, Chernozhukov, and Hansen (2014, Journal of Economic
Perspectives) and Chernozhukov et al. (2018, Econometrics Journal)
propose a generic approach for causal inference on low-dimensional target
parameters in the presence of high-dimensional nuisance parameters

The nuisance parameters can be estimated using a broad array of
machine learning methods including regularized regression, boosted trees
and random forests, neural nets, as well as ensembles of these methods.

Post-model selection estimators of target parameters have standard
asymptotic distribution as if their was no prior model selection and
estimation of nuisance parameters

Evidence on finite-sample performance limited
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