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How DOES:

e VEGETATION AFFECT ECOSYSTEM FUNCTION UNDER DROUGHT?

e DROUGHT AFFECT PLANT STRUCTURE & FUNCTION?




VEGETATION CONTROLS ON ECOSYSTEM FLUXES
UNDER DROUGHT
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PLANT WATER USE
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PREDICTING TRANSPIRATION & SOIL MOISTURE IS IMPORTANT
(...BUT WE'RE NOT VERY GOOD AT IT)

80% of interannual land carbon sink
varlablllty
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Earth system processes (e.g. carbon cycle)
MISMATCHED SCALES 100+ km
OF CAUSE AND EFFECT

Land-atmosphere feedback:

10m-10km CO,

Root Water Uptake: m
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Carminati et al. (2020) New Phytol. 226: 1541-1543.




SOIL MOISTURE HETEROGENEITY

Heterogeneity increases as soil dries

due to nonlinearities in flow equation:

C@W)

alp—VK \Y
Frie (K@)Vy)

This presents a major computational
problem at larger scales:

» Flowrate controlled by small-scale
variation, not large-scale “mean”
values

Depth (cm)

Volumetric
water
content

Carminati et al. (2020) New Phytol. 226: 1541-1543.

Neutron Tomography

Flow Model



SIMULATE GROWTH AND UPTAKE

CPlantBox: Zhou et al. (2020) In Silico Plants. 2(1):diaa001

Effects on water uptake under drought of
- root system architecture,
- root anatomy,

i lps)

...at the small scale.

0.4



SCALING UP VIA ANALYTICAL INTEGRALS OF FLOW EQUATION

The full 3D problem in
continuous form can be
formulated as a linear system
in terms of 1,

Bouda & Saiers (2017) Advances in Water Resources 110: 319-334

So an exact upscaling can be
achieved by partial Gaussian
elimination, yielding y,, for each
soil block of uniform .

1) On any root segment, use
continuous solutions Y, = f(s) to
define mean segment potential.:

lﬁx — fOL lpxl(ls) dS

2) Aweighted average for any soil
block 1/3x can be found:

N X1 kL iy (for n root
g YX1krL  segmentsineach
soil block)

which yield exact solutions for total
uptake in soil bloc Qg in simple
Darcian:

Qr =- 2111 er ({p\x - lps)
when soil water potential Y is
uniform in each block.




UPSCALING ROOT SYSTEM HYDRODYNAMICS

Single-root flow model Full 3D solution Arbitrary soil blocks Layers for Earth System Model

Parameters Boundary Solutions
Conditions 35

Code for upscaling at https://github.com/mbouda/genUpscAlg
(in beta-testing)

Discretised upscaling
Continuous (1), ) upscaling

30+

Error in award-
winning upscaling
method

Right: For large

. shrubby root
Result: exact solutions system at meter

to root water uptake equations  resolution,
discretisation

20 ¢

Error (RMSE, as % of solution)

10} Error with exact
at any scale error can be .
e solutions
significant.
Bouda and Saiers, 2017, Advances in Water Resources 110:319-334. 0 : : ‘ !
Bouda (2019) J. Advances in Modeling Earth Systems 11:4597-4613. 0 0.5 ! L5 2

Spatial resolution (m)


https://github.com/mbouda/genUpscAlg

IMPROVE ECOSYSTEM FLUX
PREDICTIONS?

Parameterise this model directly at
larger scales

Use it to characterise soil-plant
hydrodynamics of the ecosystem

Ask what controls ecosystem

hydrodynamics

Predict fluxes under drought




Focus: Soil-plant hydrodynamics

HYDROSCALE PROJECT: * Root water uptake
« Soil moisture heterogeneity

 Scaling mechanisms

Mechanistic scaling
of soil-plant hydrodynamics
in the Earth System

(2024-2026) AIM: Invert the model

« Quantify large-scale effects of
small-scale processes

UNEED
K‘ « Implement in predictive
nel= framework for water flow
under water limitation
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MEASUREMENT SITES IN THE HYDROSCALE PROJECT

Institute of
Hydrodynamics
of the CAS

X

DE

INSTITUTE
OF BOTANY CAS 50 km
o Map: David Paloch (CC2.5)
Location  Catchment Forest stands Site elevation Mean Temp. Precipitation PET P-PET
character (ma.s.l.) (deg. C) (mm/yr) (mm/yr) (mm/yr)
Pruhonice Lowland [1] Beech 325 10 595 700 -100
Liz Montane [2] Beech 855-890 7 847 550 300
headwater [3] Spruce
Rokytka Peatbog, [4] Beech 1107-1145 5 1611 600 1000

forest [5] Spruce




Growth increment and
Sapflow on 7-8 trees

Stem water potential
on up to 4 trees

Stems

Soil water
potential &
content

INSTRUMENTATION

4 profiles at 8
depths to 2m

+ Reference measurements:

— A Root lengths
- Bulk soil P over depth
and time

Adapted from Sperry et al. (2016) New Phytol. 212:577-589.

e Catchment meteorology & runoff
e Canopy hemispherical photographs
* Scholander chamber water potentials




INVERT UPSCALED HYDRODYNAMIC MODEL TO DATA

Beech forest soil-plant hydrodynamics (2021)
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What processes control large-scale
hydraulic parameters?

Time-series analysis:

At what time-scale do they change?

E.g. daily, or with root lengths?

Beech tree stem ¢z at drought onset

ﬂ

Date 2024

Single pit 4_at drought onset

Observed tension
and water content
in soil

Observed tension
and water flows
in stems
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IMAGE ANALYSIS

Feature segmentation:

 Semi-automated (Matlab)

 Convolutional Neural Net
Extract:

* Root length vs depth (change over time)
. Wood vessel d1mens1ons

: bt “'"-- . ,... “'—*;;—“ S — S 2 A M:"-.T." i . \'..,'.
e A e

ood anatomy (11ght m1crograph)

Computational Science Hub,
20.11.2028 Simulating plant vascular form, function, and evolution,

16
Maxtin Bouda Roots imaged belowground




POST-DROUGHT RECOVERY OF TREE HYDRAULIC CONDUCTANCE

After 2018 drought: 25

Yearly increment, summed over 5 trees
Wood cores show trees had not fully

recovered hydraulic conductance by
2021

Sap flow data shows forest
transpiration was affected

Lumen conductivity potential

Full recovery may take long given

Qi Liu

{11,011

Beech wood anatomy 0

2013 2014 2015 2016 2017 2018 2019 2020 2021

Year

Liu al. (in prep)




EXPERIMENT

Estimate uncertainty in Sap Flow
measurement

Masters Thesis: Jan Saltekin

Computational Science Hub,
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Martin Bouda
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FLOW OVER TIME: SF-81 PROBE VERSUS BALANCE
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MULTIPHYSICS SIMULATION

Pressure condition
e Model heat and water flow

(steady flow equations)

- B
* Finite Element Method Temp.
(COMSOL) data

Temperature

condition a =
e

 Fit model to observations to understand
heat loss — flow rate relationship &

provide probe calibration Flow condition

* Sensitivity analysis:
apply to larger trunks? I
Gomputational Seience Hub, FEM Experimental Setup

20.11.2025 Simulating plant vascular form, function, and evolution,
Martin Bouda




RESEARCH QUESTIONS

What controls forest transpiration
when water is limited?

How long can plants get water and
fix carbon during drought?

Do our sensors work?

COMPUTATIONAL TECHNIQUES
Flow simulations (PDE Models)

* On complex geometries (root networks)
* Finite Element Method (multiphysics)

Image analysis
Time-series data analysis

Growth simulation (root systems)

[Competing Al agents under resource
heterogeneity]
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Earliest vascular plants (Silurian):
tiny hydrophytes.

Central vascular strand:
cylinder, few cells across.

Early Devonian Landscape (Top)

© Julian Kiely, 2022.

Cooksonia, 420 MYA (Right)

Edwards et al., Bot. J. Linn. Soc., 2004, 146, 399-413.
(Far Right)

Bertie Formation, Upper Silurian, Royal Ontario Museum
IP49684



Devoman radlatlon

TR

: 3

Rhiniophyta

Zosterophylls

Isoetales

PSiIo%hrdon

Cladoxylopsids

Ferns

(T |

(lllustration: Late Devonian landscape © Julian Kiely, 2022)

* Xylem strand diversity and complexity
increases as plants:
Archaeopteridales . . . .
o * radiate into drier habitats
* increase in stature
* No known selective pressure
i SU " Thought to be developmental artefact

Stenokoleales

Aneurophytales

Silurian Devonian Carboniferous




Stelar evolution as a developmental artefact

\

Wight (1987) Paleobiology 13(2):208-214.



Xylem water is a metastable liquid under tension

Closed stomata G) OW&!_: ’@-\‘

¢ TS . .. S— H:0 _CO:
| 25 High
\ 20 - Vapour-phase embolism:

Metastable

15 1 water

Tree height (m)

10 -

Gravity
—— Gravity + Dry soil
Gravity + Dry soil + Flow

Xylem sap pressure (-MPa)
Ventruas et al. (2017) J. Integr. Plant Biol. 59(6):356-389.

Cochard & Delzon (2013) Ann. For. Sci. 70:659—661



Hydraulic failure through embolism spread

* As xylem tension exceeds ASP:
embolism spreads

* Runaway embolism spread:
catastrophic loss of conductivity

* % loss conductivity: P50, P88

Vulnerability curve
I

100 |

88

80

60 -

40

% Loss of conductivity

20

Xylem tension (-MPa)

Brodersen (2021) Ann. Bot. 128(2):iii-v.



Embolism spread thought experiment

e 25 conduits in each stele

 Water tension at median value
of pit membrane air-seeding
resistance distribution

* Embolism will spread to
50% neighbouring conduits

e Xylem strand shape determines
outcome
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Data: conduit networks from cross sections of
60 species

Top Left: Aglaophyton majus, Edwards (2003) Earth Environ Sci Trans R Soc Edinb 94:397-410.

44 EXta nt pterldophytes (I|ght mICFOSCOpy) Left : Gosslingia breconensis, Kenrick & Edwards (1988) Bot J Linn Soc 97: 95-123.

Top: Drepanophycus spinaeformis, Rayner (1984) Earth Environ Sci Trans R Soc Edinb 75:353-

16 Devonian/Carboniferous fossils (from literature) e«

Extant taxa & network reconstructions: Bouda et al. (2022) Science 378:642-646.



Topology of real xylem networks

05 @ 1« Real plants cover nearly the

whole theoretical space

o

1 < Early tracheophytes cluster
in vulnerable part of space

1 ¢ No extant xerophytes found
with vulnerable topologies

Log path concentration
O
(6)]

[ | Extant
-1+ O Extinct -
Selaginella
*x Lycopodiaceae
Other Lycophytes
o Ferns

N
(&)
T

1 i Psilophyton dawsonii

ii Haskinsia colophylla

iii Selaginella selaginoides
iv Huperzia squarrosa

v Huperzia obtusifolia

Basal lineages
| 1 |

2.5 3 3.5 4 4.5 5 S5
Mean number neighbors

Bouda et al. (2022) Science 378:642-646.



1 ZE AND FORM
N PLANTS

WITH SPECIAL REFERENCE TO THE
PRIMARY CONDUCTING TRACTS

By

E. O -BOWER~5Sc.D., LL.D., F.R.5.

MERITUS 1ROEEES0) R
USIVERSITY O G ASGOW

WITH T8 FIGURES AND %5 TABLES

MACMILLAN AND COQ., LIMITED
ST. MARTIN'S STREET, LONDON

1930

What is the effect of size?

THE LIVING LYCOPODIALES 2y
The stele is delimited by a cylindrical but rather indefinite Bower & Wa rdlaW found that
L e organ size correlates with vascular
he series of seven drawings by Wardlaw are all repr
sented on the same scale, but 1.'|3|I'.".' are not here an onto- CompIeXIty over 100 yea rs ago.

genetic series (Fiz. 7). They were taken partly [rom o

| & ‘;‘r

But why?

: j L
'It ; N
z ~ 12 SIZE AND FORM IN PLANTS
) & considerable size, peculiar stelar consequences of the
y _ E bilateral symmetry are found. The smaller species remain
i lcﬁ % ‘ monostelic, each stele being surrounded by its trabecular
“‘-3 o G endodermis. The stele of the sporeling is approximately

radial : but as the shoot enlarges upwards the stem takes
a dorsiventral form, and the stele itself 1s flattened, with a
thin ribbon of tracheidal wood bearing protoxylems at its
two margins. The breadth of this ribbon increases up-
wards in the larger species, such as S. grandis, while its

3 ‘é"

() (— e

] 4 -

f 9

(—) amar— 0

2 6 ~
e




Vulnerability of growing xylem strand:
(1) Cylinder (terete form)

* Vulnerability increases

?

Resistant ' ' | | | | | | | with size:
3_
* Number of neighbours
g Nl tends toward 6
5
2 | @ Q Q  Parallel pathways multiply
O_I | |
Vulnerable 8 16 32 128 256 1024 2048

v Number tracheids in shape



Vulnerability of growing xylem strand:
(2) Linear strand

* Vulnerability decreases
Resistant | | | | | | | | | with size:

~ * Number of neighbours
] tends towards 2

P88 (o ASP)
N

—
!

* No parallel paths,

increasing path

ol ] concentration
Vulnerable 8 16 32 64 128 256 512 1024 2048

v Number tracheids in shape




Terete and linear limits of theoretical space

Resistant

Vulnerable

|
16

|
32

1 1 ] ]
64 128 256 512
Number tracheids in shape

|
1024

|
2048

&=

®

(1) All other shapes
must fall
between these
two

(2) Some network
properties are
extensive, not
intensive



Vulnerability of growing xylem strand:
(3) straps & lobed shapes

* Width is the key
explanatory
Resistant | | | | | | | | i \ variable

y * Increasing

number of lobes

i - Q is a disadvantage
Q vulnerability
region only

@ available to

extreme shapes
(width < 2)

w
T

N
I

* Lowest

Mortality threshold: p88 (o ASP)

V.
Vi
Vil

| | | | | | | |
Vulnerable 8 16 32 64 128 256 512 1024 2048
v Number of conduits

o
I




Null
Rano

Resistant

Vulnerable

nypothesis construction:
omly sample graphs over range of sizes

4 | | I I I | | |
Linear limit (i)
3.5 Terete limit (viii) i
3l Graph distribution 1
15%99" percentile

N
8
T

Simulated P88 (o ASP)
o
| |

—
|

o
5
T

o
|

\4

| | | I ! 1 Vil

64 128 256 512 1024 2048
Number of conduits

Expectation:

random graphs
show increased
vulnerability
with size



Observed xylem strands are non-random

® Extant
41— I I T | | | | | O Extinct
Linear limit (i) i ¢ Selagienlla
3.5 Terete limit (viii) i} Lycopodiaceae
5l Graph distribution ] Other Lycophytes
N st ;mnth . ® Ferns
225 1°°/99" percentile = Basal lineages
b L0 _
3 | o | * All extant taxa show
5 ¢ o divergence from terete
T 1.5k ° oo o - | limi ith si
2 ¢ . b ower limit with size
n 1F . AR % .”.Q % | (p<0.001)
®
0.5 o —
¢ ot 4. | *large ?<ylem s.trands (neona > 130)
0= | | | ' ' ' ' i Show increasing tendency to
8 16 32 64 128 256 512 1024 2048

Bouda et al. (2022) Science 378:642-646.

Number of conduits

be outliers (p<0.001)

* Taking fossils as 1 group,
same tendencies, but
weaker (p<0.001)



No large cylinders,




WAS THERE PARALLEL EVOLUTION OF ANATOMY TOWARDS TREES?

(b) Maximum axis
diameter (cm)

I
150 — Archaeopteris A

100= Eospermatopteris | ™|
m / Wattieza
- <4 Pseudobornia
50 m—t Leptophloeum
7 Lepidosigillaria
- Archaeopteridales e
- | — |‘ Cyclostigma
Calamophyton |\ | Pietzschialll
10 =hesesnnnssnnannsmmmrrrmmerrmmsmraT . ........ ..a_._ ..................................................
° Pseudosporochnus
*
Lower Devonian Middle Dev. |Upper Devonian| Mississippian

Donaghue (2005) Paleobiology 31(2):77-93. Meyer-Bertaud et al. (2010) Geological Society, London, Special Publications 339:59 — 70.



IMAGE PROCESSING PIPELINE

Kenricrana bivena (Battery Pt. Fm., 402-397 MYA); Toledo et al. (2018) New Phytol. 232:914-927.

Step 1: Binarisation [Fiji]

Step 2: Network extraction[Custom Matlab code]
Semi-automated, Ul-based,
working towards releasing v1.0




FOSSIL XYLEM DATABASE

Current State

>120 fossils processed

l1an

>100 Lower Devon

(420
> 20

390 MYA)

woody

woody
000 condu

> 80 non

s

i

> 100.

d of

ique recor
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Becom
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plant vascular evolut

101N

Will need curat

Computational Science Hub,
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and evolution,

Simulating plant vascular form, function,

Martin Bouda
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3D MODELS oF Woob & GROWTH

6 i) AT R A
Wood is anisotropic & has 3D structure o .. /lgé\//§/ Al N
008 —| (g/’,i,\'v‘\‘/ f
. N .:. "‘%\ h \\V’/ 5 Rw A0 :
Inherently 3D networks derived from N { W M{){\
[} L] WrE= \‘ k"i’-" . : =10
images (fossil & modern wood) (/W) :

0

Questions:

Does wood anatomy change percolation
threshold? ¢
Does percolation constrain possible

anatomies for trees? (large plants)

A

Computational Science Hub, Top: Conduit network of a wood sector

20.11.2025 Simulating plant vascular form, function, and evolution,

44
Martin Bouda Bottom: 3 planes of Araucaroid wood (InsideWood Database)



3D EMBOLISM (PERCOLATION) SIMULATIONS T
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RESEARCH QUESTIONS

How does drought constrain plant
anatomy?

Did drought make plants branch?

How can there be trees?

COMPUTATIONAL TECHNIQUES

Simulating flow & percolation on lattice
graphs (xylem conduit networks)

Image analysis (network construction)
Simulating development (xylem)

Constrained optimization

46
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